메뉴 건너뛰기

이너포스

공지사항

    • 글자 크기

The Last Word Strategy For Deepseek

PatriciaRussell856962025.03.23 05:41조회 수 0댓글 0

Creating a Free Deepseek Online chat account is step one towards unlocking its features. It did not take into account the investment it made to buy hundreds of varying fashions of Nvidia chips, and different infrastructure costs. He's the CEO of a hedge fund known as High-Flyer, which makes use of AI to analyse financial knowledge to make investment choices - what is known as quantitative buying and selling. Because of an oversight on our side we didn't make the class static which means Item must be initialized with new Knapsack().new Item(). 대부분의 오픈소스 비전-언어 모델이 ‘Instruction Tuning’에 집중하는 것과 달리, 시각-언어데이터를 활용해서 Pretraining (사전 훈련)에 더 많은 자원을 투입하고, 고해상도/저해상도 이미지를 처리하는 두 개의 비전 인코더를 사용하는 하이브리드 비전 인코더 (Hybrid Vision Encoder) 구조를 도입해서 성능과 효율성의 차별화를 꾀했습니다. 그리고 2024년 3월 말, DeepSeek는 비전 모델에 도전해서 고품질의 비전-언어 이해를 하는 모델 DeepSeek-VL을 출시했습니다. 이렇게 하는 과정에서, 모든 시점의 은닉 상태들과 그것들의 계산값을 ‘KV 캐시 (Key-Value Cache)’라는 이름으로 저장하게 되는데, 이게 아주 메모리가 많이 필요하고 느린 작업이예요. 이게 무슨 모델인지 아주 간단히 이야기한다면, 우선 ‘Lean’이라는 ‘ 기능적 (Functional) 프로그래밍 언어’이자 ‘증명 보조기 (Theorem Prover)’가 있습니다.


2025_01_287701 - DeepSeek 따라서 각각의 전문가가 자기만의 고유하고 전문화된 영역에 집중할 수 있습니다. 기존의 MoE 아키텍처는 게이팅 메커니즘 (Sparse Gating)을 사용해서 각각의 입력에 가장 관련성이 높은 전문가 모델을 선택하는 방식으로 여러 전문가 모델 간에 작업을 분할합니다. MoE에서 ‘라우터’는 특정한 정보, 작업을 처리할 전문가(들)를 결정하는 메커니즘인데, 가장 적합한 전문가에게 데이터를 전달해서 각 작업이 모델의 가장 적합한 부분에 의해서 처리되도록 하는 것이죠. DeepSeekMoE는 각 전문가를 더 작고, 더 집중된 기능을 하는 부분들로 세분화합니다. ‘공유 전문가’는 위에 설명한 라우터의 결정에 상관없이 ‘항상 활성화’되는 특정한 전문가를 말하는데요, 여러 가지의 작업에 필요할 수 있는 ‘공통 지식’을 처리합니다. 공유 전문가가 있다면, 모델이 구조 상의 중복성을 줄일 수 있고 동일한 정보를 여러 곳에 저장할 필요가 없어지게 되죠. 하지만 각 전문가가 ‘고유한 자신만의 영역’에 효과적으로 집중할 수 있도록 하는데는 난점이 있다는 문제 역시 있습니다. 이런 방식으로 코딩 작업에 있어서 개발자가 선호하는 방식에 더 정교하게 맞추어 작업할 수 있습니다. 이런 두 가지의 기법을 기반으로, DeepSeekMoE는 모델의 효율성을 한층 개선, 특히 대규모의 데이터셋을 처리할 때 다른 MoE 모델보다도 더 좋은 성능을 달성할 수 있습니다. DeepSeek 연구진이 고안한 이런 독자적이고 혁신적인 접근법들을 결합해서, DeepSeek Chat DeepSeek-V2가 다른 오픈소스 모델들을 앞서는 높은 성능과 효율성을 달성할 수 있게 되었습니다. 다른 오픈소스 모델은 압도하는 품질 대비 비용 경쟁력이라고 봐야 할 거 같고, 빅테크와 거대 스타트업들에 밀리지 않습니다.


이 Lean 4 환경에서 각종 정리의 증명을 하는데 사용할 수 있는 최신 오픈소스 모델이 DeepSeek-Prover-V1.5입니다. 이제 이 최신 모델들의 기반이 된 혁신적인 아키텍처를 한 번 살펴볼까요? DeepSeek-V2에서 도입한 MLA라는 구조는 이 어텐션 메커니즘을 변형해서 KV 캐시를 아주 작게 압축할 수 있게 한 거고, 그 결과 모델이 정확성을 유지하면서도 정보를 훨씬 빠르게, 더 적은 메모리를 가지고 처리할 수 있게 되는 거죠. 이렇게 하면, 모델이 데이터의 다양한 측면을 좀 더 효과적으로 처리할 수 있어서, 대규모 작업의 효율성, 확장성이 개선되죠. DeepSeek-Coder-V2는 컨텍스트 길이를 16,000개에서 128,000개로 확장, 훨씬 더 크고 복잡한 프로젝트도 작업할 수 있습니다 - 즉, 더 광범위한 코드 베이스를 더 잘 이해하고 관리할 수 있습니다. 코드 편집 성능 비교. 수학과 코딩 벤치마크에서 DeepSeek-Coder-V2의 성능. DeepSeek-Coder-V2 모델은 수학과 코딩 작업에서 대부분의 모델을 능가하는 성능을 보여주는데, Qwen이나 Moonshot 같은 중국계 모델들도 크게 앞섭니다. DeepSeek-Coder-V2 모델을 기준으로 볼 때, Artificial Analysis의 분석에 따르면 이 모델은 최상급의 품질 대비 비용 경쟁력을 보여줍니다. 이 DeepSeek-Coder-V2 모델에는 어떤 비밀이 숨어있길래 GPT4-Turbo 뿐 아니라 Claude-3-Opus, Gemini-1.5-Pro, Llama-3-70B 등 널리 알려진 모델들까지도 앞서는 성능과 효율성을 달성할 수 있었을까요? 이 소형 모델은 GPT-4의 수학적 추론 능력에 근접하는 성능을 보여줬을 뿐 아니라 또 다른, 우리에게도 널리 알려진 중국의 모델, Qwen-72B보다도 뛰어난 성능을 보여주었습니다. DeepSeek-Coder-V2 모델은 컴파일러와 테스트 케이스의 피드백을 활용하는 GRPO (Group Relative Policy Optimization), 코더를 파인튜닝하는 학습된 리워드 모델 등을 포함해서 ‘정교한 강화학습’ 기법을 활용합니다.


다만, DeepSeek-Coder-V2 모델이 Latency라든가 Speed 관점에서는 다른 모델 대비 열위로 나타나고 있어서, 해당하는 유즈케이스의 특성을 고려해서 그에 부합하는 모델을 골라야 합니다. ‘코드 편집’ 능력에서는 DeepSeek-Coder-V2 0724 모델이 최신의 GPT-4o 모델과 동등하고 Claude-3.5-Sonnet의 77.4%에만 살짝 뒤지는 72.9%를 기록했습니다. 트랜스포머에서는 ‘어텐션 메커니즘’을 사용해서 모델이 입력 텍스트에서 가장 ‘유의미한’ - 관련성이 높은 - 부분에 집중할 수 있게 하죠. 236B 모델은 210억 개의 활성 파라미터를 포함하는 DeepSeek의 MoE 기법을 활용해서, 큰 사이즈에도 불구하고 모델이 빠르고 효율적입니다. 예를 들어 중간에 누락된 코드가 있는 경우, 이 모델은 주변의 코드를 기반으로 어떤 내용이 빈 곳에 들어가야 하는지 예측할 수 있습니다. 두 모델 모두 DeepSeekMoE에서 시도했던, DeepSeek만의 업그레이드된 MoE 방식을 기반으로 구축되었는데요. 어쨌든 범용의 코딩 프로젝트에 활용하기에 최적의 모델 후보 중 하나임에는 분명해 보입니다. 자, 이렇게 창업한지 겨우 반년 남짓한 기간동안 스타트업 DeepSeek가 숨가쁘게 달려온 모델 개발, 출시, 개선의 역사(?)를 흝어봤는데요. 자, 이제 Free Deepseek Online chat-V2의 장점, 그리고 남아있는 한계들을 알아보죠. 텍스트를 단어나 형태소 등의 ‘토큰’으로 분리해서 처리한 후 수많은 계층의 계산을 해서 이 토큰들 간의 관계를 이해하는 ‘트랜스포머 아키텍처’가 DeepSeek-V2의 핵심으로 근간에 자리하고 있습니다. DeepSeek-V2의 MoE는 위에서 살펴본 DeepSeekMoE와 같이 작동합니다. DeepSeek-V2는 위에서 설명한 혁신적인 MoE 기법과 더불어 DeepSeek 연구진이 고안한 MLA (Multi-Head Latent Attention)라는 구조를 결합한 트랜스포머 아키텍처를 사용하는 최첨단 언어 모델입니다.

  • 0
  • 0
    • 글자 크기
PatriciaRussell85696 (비회원)

댓글 달기 WYSIWYG 사용

댓글 쓰기 권한이 없습니다.
정렬

검색

번호 제목 글쓴이 날짜 조회 수
19302 Slot Bet Online 692126244415828458497964848584 DonetteDitter70188976 2025.03.26 1
19301 Trusted Quality Slot Hints 888497897851961994637314529515 ReyesMcKibben431012 2025.03.26 1
19300 Triangle Billiards: Expectations Vs. Reality MaxCannan805977381 2025.03.26 0
19299 Menyelami Dunia Slot Gacor: Petualangan Tak Terlupakan Di Kubet EdythePolk516395924 2025.03.26 0
19298 Prioritizing Physical And Mental Well-being While Driving A Truck GenaTowner73036 2025.03.26 2
19297 Menyelami Dunia Slot Gacor: Petualangan Tak Terlupakan Di Kubet RebekahRip33217171 2025.03.26 0
19296 17 Reasons Why You Should Ignore Triangle Billiards MaryannePurnell51 2025.03.26 0
19295 Diyarbakır Hani Escort AnnabellePeyser36044 2025.03.26 0
19294 По Какой Причине Зеркала Веб-сайта Казино Gizbo Гизбо Незаменимы Для Всех Завсегдатаев? FionaMontano25149104 2025.03.26 5
19293 Best Online Slots Gambling Strategies 9684791438898 IlseBoucicault205 2025.03.26 1
19292 Great Online Slot Gambling Site Hints 4644218157593 EWALinwood37824156 2025.03.26 1
19291 Training On Professional Drivers BrianneDevlin94 2025.03.26 2
19290 FileViewPro Vs. Other Tools: Which Is Best For SD0 Files? PaigeHarker825394315 2025.03.26 0
19289 Best Online Slot Gambling Information 9917654723344 LatoyaFielding76445 2025.03.26 1
19288 Quality Online Slot Gambling Agent Tips 4823649122535 ElijahMercier252172 2025.03.26 1
19287 Best Online Slot Gambling Site Option 4462379744454 Joeann25E245753856400 2025.03.26 1
19286 Secrets And Techniques Your Dad And Mom By No Means Told You About How To Do Conversion Tracking MeriPruett08348 2025.03.26 5
19285 Trusted Online Gambling Agency Manuel 1718655835756 GeraldoGlennie131747 2025.03.26 1
19284 Menyelami Dunia Slot Gacor: Petualangan Tidak Terlupakan Di Kubet HelenLoveless7509 2025.03.26 0
19283 Red Sox Acquire Infielder Luis Urias From Brewers DinoHuonDeKermadec12 2025.03.26 1
정렬

검색

위로